Emodin Enhanced Microwave-Responsive Heterojunction with Powerful Bactericidal Capacity and Immunoregulation for Curing Bacteria-Infected Osteomyelitis

Adv Sci (Weinh). 2024 Nov 27:e2409979. doi: 10.1002/advs.202409979. Online ahead of print.

Abstract

Eradication of osteomyelitis caused by bacterial infections is still a major challenge. Microwave therapy has the inherent advantage of deep penetration in curing deep tissue infections. However, the antibacterial efficiency of sensitizers is limited by the weak energy of microwaves. Here, a hybrid heterojunction system (Fe3O4/CuS/Emo) is designed for curing bacterially infected osteomyelitis. As an enhanced microwave sensitizer, it shows supernormal microwave response ability. Specifically, Fe3O4 acts as a matrix to mediate magnetic loss. After CuS loading, the heterogeneous interface forms induce significant interfacial polarization, which increasing dielectric loss. On the basis of the heterojunction formed by the two semiconductors, emodin is innovatively introduced to modify it. This integration not only accelerates the movement of charge carriers but also enhances polarization loss due to the numerous functional groups present on the surface. This further optimizes the microwave thermal and catalytic response. In addition, the unique anti-inflammatory properties of emodin confer the ability of hybrid heterojunction to regulate the immune microenvironment. In vivo studies reveal that heterojunction modified by emodin programmed elimination of bacteria and regulation of the immune microenvironment. It offers a revolutionary approach to the treatment of bacterial osteomyelitis.

Keywords: antimicrobial; dielectric losses; heterogeneous interfaces; microwave response; osteomyelitis.