Carbon footprint distributions of lithium-ion batteries and their materials

Nat Commun. 2024 Nov 27;15(1):10301. doi: 10.1038/s41467-024-54634-y.

Abstract

Lithium-ion batteries are pivotal in climate change mitigation. While their own carbon footprint raises concerns, existing studies are scattered, hard to compare and largely overlook the relevance of battery materials. Here, we go beyond traditional carbon footprint analysis and develop a cost-based approach, estimating emission curves for battery materials lithium, nickel and cobalt, based on mining cost data. Combining the emission curves with regionalised battery production announcements, we present carbon footprint distributions (5th, 50th, and 95th percentiles) for lithium-ion batteries with nickel-manganese-cobalt (NMC811, 8-1-1 ratio; 59, 74 and 115 kgCO2 kWh-1) and lithium-iron-phosphate (LFP; 54, 62, 69 kgCO2 kWh-1) cathodes. Our findings reveal the dominating impact of material sourcing over production location, with nickel and lithium identified as major contributors to the carbon footprint and its variance. This research moves the field forward by offering a nuanced understanding of battery carbon footprints, aiding in the design of decarbonisation policies and strategies.