Space-Confined Vertical Growth of Large-Size Organic Semiconductor Single Crystals

ACS Appl Mater Interfaces. 2024 Dec 11;16(49):68120-68130. doi: 10.1021/acsami.4c17020. Epub 2024 Nov 27.

Abstract

Organic semiconductor single crystals (OSSCs) have garnered considerable attention because of their high charge mobility and atomic-scale smooth surface. However, their large-size high-quality preparation remains challenging due to the inevitable defects and limited growth speed brought by traditional epitaxial growth. Here, we demonstrate a space-confined strategy, named out-of-plane microspacing in-air sublimation (OPMAS), for growing vertically millimeter-sized OSSCs in several minutes by revolutionizing the heterogeneous epitaxial growth mode severely depending on substrates into a spontaneous homogeneous growth mode free from substrates. The intrinsic driven force of this transformation is proved to be the change of surface energy, and the maximum size of crystals is thermodynamically dependent on the distance of the microspace. OPMAS has been proven to be suitable for preparing single crystals of various typical organic semiconductors. Numerous characterizations have been conducted to prove the high quality and uniformity of the thus-produced OSSCs. In addition, the photoresponse of the prepared OSSCs is highly dependent on the illumination intensities, making it suitable for high-contrast Morse coding process, demonstrating a stable switch ratio of about 3.3. This work provides a universal platform for preparing large-sized OSSCs, advancing both fundamental (opto)electronic studies and a wide range of practical applications.

Keywords: epitaxial growth; microspacing in-air sublimation; optoelectronics; organic single crystal; vertical field effect transistors.