Fatty acid binding protein 7 (FABP7) is a multifunctional chaperone involved in lipid metabolism and signaling. It is primarily expressed in astrocytes and neural stem cells (NSCs), as well as their derived malignant glioma cells within the central nervous system. Despite growing evidence for FABP7's tumor-intrinsic onco-metabolic functions, its mechanistic role in regulating the brain tumor immune microenvironment (TIME) and its impact on prognosis at the molecular level remain incompletely understood. Utilizing combined transcriptome profiling and pan-cancer analysis approaches, we report that FABP7 mediates the expression of multiple onco-immune drivers, collectively impacting tumor immunity and clinical outcomes across brain cancer subtypes. An analysis of a single-cell expression atlas revealed that FABP7 is predominantly expressed in the glial lineage and malignant cell populations in gliomas, with nuclear localization in their parental NSCs. Pathway and gene enrichment analysis of RNA sequencing data from wild-type (WT) and Fabp7-knockout (KO) mouse brains, alongside control (CTL) and FABP7-overexpressing (FABP7 OV) human astrocytes, revealed a more pronounced effect of FABP7 levels on multiple cancer-associated pathways. Notably, genes linked to brain cancer progression and tumor immunity (ENO1, MUC1, COL5A1, and IL11) were significantly downregulated (>2-fold) in KO brain tissue but were upregulated in FABP7 OV astrocytes. Furthermore, an analysis of data from The Cancer Genome Atlas (TCGA) showed robust correlations between the expression of these factors, as well as FABP7, and established glioma oncogenes (EGFR, BRAF, NF1, PDGFRA, IDH1), with stronger associations seen in low-grade glioma (LGG) than in glioblastoma (GBM). TIME profiling also revealed that the expression of FABP7 and the genes that it modulates was significantly associated with prognosis and survival, particularly in LGG patients, by influencing the infiltration of immunosuppressive cell populations within tumors. Overall, our findings suggest that FABP7 acts as an intracellular regulator of pro-tumor immunomodulatory genes, exerting a synergistic effect on the TIME and clinical outcomes in brain cancer subtypes.
Keywords: CAF; FABP7; GBM; LGG; MDSC; NSC; TCGA; TIME; Treg.