Modification of chitosan has been achieved by the reaction of chitosan with 4- nitro-benzaldehyde via the sol-gel method, resulting in a Schiff base. A novel magnetic Graphitic Carbon Nitride/chitosan-Schiff base/NiFe2O3 (SBIV@NiFe/g-C3N4) adsorbent was synthesized by hydrothermal route for the adsorption of Cu(II) and Hg(II) ions from the aquatic environment. The synthesized SBIV@NiFe/g-C3N4 was characterized using infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET), with a surface area of approximately 13.657 m2/g. It was anticipated by the results that magnetic SBIV@NiFe/g-C3N4 would be effectively synthesized. On Cu(II) and Hg(II) adsorption, the impacts of significant variables, including pH solution, contact duration, metal ion concentration, adsorbent dosage, and co-existing ions, were examined. Under ideal circumstances, the optimum adsorption capacities of Cu(II) and Hg(II) ions were 889.76 mg/g and 703.21 mg/g, respectively. Furthermore, the SBIV@NiFe/g-C3N4 material exhibited the beneficial property of simple separation, permitting the continuation of high removal effectiveness for heavy metals like Cu (II) and Hg(II) despite experiencing many reuse cycles. In summary, there are a lot of opportunities for the effective elimination of Cu (II) and Hg (II) from different water sources shortly with the use of SBIV@NiFe/g-C3N4, a new adsorbent. The as-synthesized SBIV@NiFe/g-C3N4 displayed better antibacterial activity against highly lethal bacteria like S. aureus and P. vulgaris.
Keywords: 4- nitro-benzaldehyde; Antibacterial activity; Chitosan; Cu (II) and Hg (II) removal; Graphitic carbon nitride.
Copyright © 2024. Published by Elsevier B.V.