Intravenous Immunomodulatory Nanoparticles Prevent Secondary Damage after Traumatic Brain Injury

J Neurotrauma. 2025 Jan;42(1-2):94-106. doi: 10.1089/neu.2024.0218. Epub 2024 Nov 21.

Abstract

After traumatic brain injury (TBI), monocyte/macrophage infiltration is a key early step in the development of an inflammatory cascade that leads to substantial secondary damage. Intravenous (IV) immunomodulatory nanoparticle (IMP) administration after TBI limits inflammatory cell infiltration and reduces both behavioral decline and lesion size without any noticeable toxicity. Here we show that there is a dose-response relationship between the amount of IMP administered and tissue damage which plateaus at a well-tolerated dose. There is a therapeutic window of efficacy for IMP administration of at least 6 h after injury with some benefit observed when treatment was delayed for 12 h after injury. Single cell RNA sequencing demonstrated substantial changes in gene expression after TBI in both neural and non-neural cells in the brain, and IMP administration ameliorated many of the changes. Particularly notable were significant unexpected changes in CCR1, CXCR2, and BDNF expression in vascular smooth muscle cells that may participate in injury responses after TBI. Thus, IMP treatment within 6 h after TBI limits inflammatory responses and gliosis, improves anatomical and behavioral outcomes and prevents detrimental changes in gene expression in both neural and non-neural cellular elements of the brain. IMPs are non-toxic and are made of an FDA-approved material that is stable at room temperature. They could easily be given IV immediately after TBI in the field by emergency medical technicians or in the emergency room to prevent secondary damage, thereby improving outcomes.

Keywords: chemokines; nanoparticles; neuroinflammation; neuroprotection; traumatic brain injury.

MeSH terms

  • Administration, Intravenous
  • Animals
  • Brain Injuries, Traumatic* / drug therapy
  • Brain Injuries, Traumatic* / pathology
  • Immunomodulating Agents / administration & dosage
  • Immunomodulating Agents / pharmacology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Nanoparticles* / administration & dosage

Substances

  • Immunomodulating Agents