The electrochemical hydrogen evolution reaction (HER) holds substantial promise for large-scale green hydrogen production due to its cost-effectiveness, high performance, and scalability for repeated implementation. A promising strategy that involves a novel transition-metal chalcogenide with a self-supported framework can improve the reaction kinetics in the HER. We synthesize a nano three-dimensional self-supported HER catalyst via a straightforward one-step chemical vapor deposition process. This method incorporates a dual co-reaction with sulfur (S) and selenium (Se) onto a commercially available Monel alloy (CNSSe). The dynamics ion exchange redox reactions promote the formation of heterogeneous catalyst structures. Density functional theory (DFT) calculations indicate that the CNSSe catalyst exhibits low hydrogen coverage, as evidenced by a thermoneutral free energy of adsorbed hydrogen (ΔGH*) of 0.105 eV, which can be attributed to the dual introduction of S and Se. Consequently, the optimized CNSSe electrocatalyst achieves an enhancement in HER performance exceeding 100% compared to catalysts introduced exclusively with either S or Se. These results underscore the substantial potential of the optimized CNSSe electrocatalyst to improve both the performance and economic feasibility of HER technologies in alkaline water electrolysis.