Nipah virus spillovers via consumption of date palm sap in Bangladesh vary substantially between years and have been associated with lower winter temperatures and precipitation. However, the mechanisms driving the interannual variation and the influence of weather remain unexplained. Here we investigated the hypothesis that weather patterns change human sap consumption and explain interannual variation in observed spillovers. We analyzed responses from a nationally representative survey conducted in Bangladesh in 2013-2016 on household date palm sap consumption and weather data for each division of Bangladesh, using logistic regression to examine whether sap consumption is associated with weather variability. We found significant associations of lower minimum temperatures and precipitation with increased household sap consumption during the sap harvesting season. This relationship was largely similar within all months and divisions, and strong associations of temperature (χ2 (1, n = 5,027) = 7.74, p < 0.01) and, independently, precipitation (χ2 = 8.00, p < 0.01) remained strong after accounting for month, location, and annual sap season. Interannual variation in date palm sap consumption in Bangladesh is likely best explained by temperature and precipitation patterns, where colder, drier winter days pose a higher risk for Nipah virus spillover. The knowledge gained in this study may be valuable for targeting timing of future behavioral interventions against consumption of date palm sap in Bangladesh.
Copyright: © 2024 Jackson et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.