The ability to control movement and learn new motor skills is one of the fundamental functions of the brain. The basal ganglia (BG) and the cerebellum (CB) are two key brain regions involved in controlling movement, and neuronal plasticity within these two regions is crucial for acquiring new motor skills. However, how these regions interact to produce a cohesive unified motor output remains elusive. Here, we discovered that a subset of neurons in the motor thalamus receive converging synaptic inputs from both BG and CB. By performing multi-site fiber photometry in mice learning motor tasks, we found that motor thalamus neurons integrate BG and CB signals and show distinct movement-related activity. Lastly, we found a critical role of these thalamic neurons and their BG and CB inputs in motor learning and control. These results identify the thalamic convergence of BG and CB and its crucial role in integrating movement signals.
Keywords: basal ganglia; cell mapping; cerebellum; circuit convergence; circuit plasticity; motor learning; multi-site photometry; thalamus.