Assessment of environmental factors influencing SARS-CoV-2 in Vietnam's surface water across two years of clinical data

Sci Total Environ. 2024 Dec 20:957:177449. doi: 10.1016/j.scitotenv.2024.177449. Epub 2024 Nov 19.

Abstract

Wastewater-based epidemiology (WBE) is an effective, non-invasive method for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by tracking viral prevalence in water. This study aimed to investigate the presence of SARS-CoV-2 in surface water in Vietnam over two years. One-step quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were employed to quantify SARS-CoV-2 and its variant-specific mutation sites (G339D/E484A) and pepper mild mottle virus (PMMoV) from a total of 315 samples (105 samples per site) to compare with reported Coronavirus disease 2019 (COVID-19) cases and environmental factors. SARS-CoV-2 was detected in 38 % (40/105), 43 % (45/105), and 39 % (41/105) of water samples from Sites A, B, and C, respectively, with concentrations of 3.0-5.6 log10 copies/L. PMMoV concentrations were 5.1-8.9 log10 copies/L. SARS-CoV-2 levels were higher in winter compared with summer. There was a strong positive association between the mutant type and SARS-CoV-2 concentrations (Spearman's rho = 0.77, p < 0.01). The mean concentrations of mutant and nonmutant types were 2.3 and 1.8 log10 copies/L, respectively. Peaks in SARS-CoV-2 concentrations preceded reported COVID-19 cases by 2-4 weeks, with the highest association observed at a 4-week delay (Pearson's correlation coefficient: 0.46-0.53). Environmental factors, including temperature, pH, and electrical conductivity, correlated negatively with SARS-CoV-2 (Spearman's rho = -0.21, -0.28, and -0.21, respectively, p < 0.05), whereas average rainfall, humidity, and dissolved oxygen correlated positively (Spearman's rho = 0.20, 0.27, and 0.51, respectively, p < 0.05). These correlations highlight the significance of environmental variables in understanding viral prevalence in water. Our findings confirmed the utility of WBE as an early warning system for long-term monitoring. Future research should incorporate environmental factors to improve prediction accuracy for clinical cases and other waterborne diseases.

Keywords: Early warning; SARS-CoV-2; Variant; Vietnam; Wastewater-based epidemiology.

MeSH terms

  • COVID-19* / epidemiology
  • Environmental Monitoring / methods
  • Humans
  • SARS-CoV-2* / genetics
  • Seasons
  • Vietnam / epidemiology
  • Wastewater* / virology
  • Wastewater-Based Epidemiological Monitoring

Substances

  • Wastewater