Current research on emergent membrane materials with ordered and stable nanoporous structures often overlooks the vital facet of manufacturing scalability. We propose the preprocessed monomer interfacial polymerization (PMIP) strategy for the scalable fabrication of high-valent cluster-based metal-organic framework (MOF) membranes with robust structures. Using a roll-to-roll device on commercial polymer supports, Zr-fum-MOF membranes are continuously processed at room temperature through the PMIP approach. These large-area membranes demonstrate the preeminent hydrogen separation capabilities, boasting an order of magnitude of permeance and a thrice-enhanced selectivity when juxtaposed with conventional polymeric membranes. The obtained PMIP-Zr-fum-MOF membranes possess superior stability in water compared with interfacial polymerization (IP)-processed low-valent metal-ion-based ZIF-8 membranes. Moreover, we have implemented the PMIP strategy's universality to process the other four diverse MOF membranes. The proposal of PMIP significantly advances the scalable fabrication of water-stable high-valent cluster MOF membranes.