Synthesis and evaluation of photoaffinity labeling reagents for identifying binding sites of sulfated neurosteroids on NMDA and GABAA receptors

RSC Adv. 2024 Nov 13;14(49):36352-36369. doi: 10.1039/d4ra07074g. eCollection 2024 Nov 11.

Abstract

The endogenous neurosteroids dehydroepiandrosterone sulfate (DHEAS) and pregnenolone sulfate (PS) are allosteric modulators of γ-aminobutyric acid type A (GABAA) and N-methyl-d-aspartate (NMDA) type glutamate receptors. Analogues of these endogenous steroid sulfates can be either positive or negative allosteric modulators (PAMs or NAMs, respectively) of these receptors, but there is limited information about the steroid-protein binding interactions that mediate these effects and photoaffinity labeling reagents (PALs) of sulfated steroids have not been reported previously. The synthesis of a panel of ten sulfated steroid analogues containing a diazirine group, five of which also contain an alkyne group for click chemistry reactions, for use in photoaffinity labeling studies to identify binding sites for steroid sulfates that are either positive or negative allosteric modulators is reported. Electrophysiological measurements on cultured rat hippocampal neurons were made to determine the modes of allosteric modulation in comparison to those of PS on both receptors. PALs with the activity profile of PS (NMDA PAM, GABAA NAM) were identified. Unexpectedly, PALs with PAM activity at both receptors were also found. Photolabeling of both receptors by two of the PALs was performed to demonstrate their utility, and by inference those of the other PALs, for future studies to identify binding sites for endogenous steroid sulfates on both receptors.