Prospects of Improving Efficiency and Stability of Hybrid Perovskite Solar Cells by Alumina Ultrathin Films

Small. 2024 Nov 13:e2408435. doi: 10.1002/smll.202408435. Online ahead of print.

Abstract

Over the last few years, the influence of low temperature (≤80 °C) and, in particular, of room temperature, atomic layer deposited alumina (ALD-Al2O3) on the properties of the underlying hybrid perovskites of different compositions and on the efficiency and stability of the corresponding perovskite solar cells (PSCs) is extensively investigated. The main conclusion is that most probably thanks to the presence of intrinsic defect states in the ALD-Al2O3 and in the perovskite layers, charge transfer and neutralization are possible and the entire lifetime of the PSCs is thus improved. Moreover, the migration of mobile ions between the layers is blocked by the ALD-Al2O3 layer and thus the occurrence of hysteresis in the current density-voltage characteristics of the PSCs is suppressed. Considering the uniform and nondestructive surface coverage, low thermal budget, small amount of material required, and short duration of the established ALD-Al2O3 deposition on top of hybrid perovskites, this additional, but fully solar cell technology-compatible, process step is most likely the most effective, cheapest, and fastest way to improve the efficiency and long-term stability of PSCs and thus increase their marketability.

Keywords: aluminum oxide; atomic layer deposition; excitons; interface; perovskite solar cells; polarons; stability.