Cannabinoid Receptor type 2 agonist GP1a attenuates macrophage activation induced by M. bovis-BCG by inhibiting NF-ĸB signaling

J Leukoc Biol. 2024 Nov 14:qiae246. doi: 10.1093/jleuko/qiae246. Online ahead of print.

Abstract

Tuberculosis (TB) is one of the leading causes of death worldwide and a major public health problem. Immune evasion mechanisms and antibiotic resistance highlight the need to better understand this disease and explore alternative treatment approaches. Mycobacterial infection modulates the macrophage response and metabolism to persist and proliferate inside the cell. Cannabinoid receptor type 2 (CB2) is expressed mainly in leukocytes and modulates the course of inflammatory diseases. Therefore, our study aimed to evaluate the effects of the CB2-selective agonist GP1a on irradiated M. bovis-BCG (iBCG)-induced J774A.1 macrophage activation. We observed increased expression of CB2 in macrophages after iBCG stimulation. The pretreatment with CB2-agonists, GP1a, JWH-133, and GW-833972A (10 µM), reduced iBCG-induced TNF-α and IL-6 release by these cells. Moreover, the CB2-antagonist AM630 (200nM) treatment confirmed the activity of GP1a on CB2 by scale down its effect on cytokine production. GP1a pretreatment (10 µM) also inhibited the iBCG-induced production of inflammatory mediators as prostaglandin (PG)E2 and nitric oxide (NO) by macrophages. Additionally, GP1a pretreatment also reduced the transcription of proinflammatory genes (inos, il1b, cox2) and genes related to lipid metabolism (dgat1, acat1, plin2, atgl, cd36). Indeed, lipid droplet accumulation was reduced by GP1a treatment which was partially blockade by AM630 pretreatment. Finally, GP1a pretreatment reduced the activation of the NF-κB signaling pathway. In conclusion, the activation of CB2 by GP1a modulated the macrophage response to iBCG by reducing inflammatory mediator levels and metabolic reprogramming.

Keywords: BCG; cannabinoid receptor 2; macrophage; tuberculosis.