Thymidine Phosphorylase Imaging Probe for Differential Diagnosis of Metabolic dysfunction-associated Steatohepatitis

Mol Imaging Biol. 2024 Dec;26(6):1036-1045. doi: 10.1007/s11307-024-01964-4. Epub 2024 Nov 13.

Abstract

Purpose: Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises simple steatosis (SS), which has a low risk of mortality, and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to liver cirrhosis and hepatocellular carcinoma. Because differentiation between MASH and SS is the most important issue in the diagnosis of MASLD, the establishment of noninvasive diagnostic methods is urgently needed. In this study, we evaluated the potential of [123I]IIMU, a thymidine phosphorylase (TYMP) targeted SPECT imaging probe, for differential diagnosis of MASLD in a preclinical animal model.

Procedures: SS and MASH mice were prepared by feeding db/db mice with a standard diet and a methionine/choline-deficient diet, respectively. Control mice were prepared by feeding m/m mice with a standard diet. TYMP expression in the liver was evaluated by RT-PCR, western blotting, and immunohistochemistry. The biodistribution of [125I]IIMU in the three model mice was evaluated at 30 min post-injection. SPECT/CT imaging studies of the three model mice were performed 30 min after injection of [123I]IIMU.

Results: Hepatic TYMP expression level was the highest in the SS mice and the lowest in the MASH mice at both mRNA and protein levels. The immunohistochemistry experiment showed a patchy distribution of TYMP only in the liver of MASH mice. In the biodistribution study, the hepatic accumulation of [125I]IIMU was the highest in the SS mice and the lowest in the MASH mice. The SPECT/CT imaging study showed similar results to the biodistribution experiment.

Conclusion: Hepatic TYMP expression level may serve as a promising imaging biomarker for differential diagnosis of SS and MASH. SPECT imaging using [123I]IIMU potentially provides a novel noninvasive diagnostic method to differentiate MASH and SS.

Keywords: 5-iodo-6-[(2-iminoimidazolidinyl)methyl]uracil (IIMU); Metabolic dysfunction-associated steatohepatitis (MASH); Non-alcoholic steatohepatitis (SS); Nuclear medicine imaging; Thymidine phosphorylase (TYMP).

MeSH terms

  • Animals
  • Diagnosis, Differential
  • Disease Models, Animal
  • Fatty Liver* / diagnostic imaging
  • Fatty Liver* / metabolism
  • Liver / diagnostic imaging
  • Liver / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Molecular Probes / chemistry
  • Single Photon Emission Computed Tomography Computed Tomography
  • Thymidine Phosphorylase* / metabolism
  • Tissue Distribution
  • Tomography, Emission-Computed, Single-Photon

Substances

  • Thymidine Phosphorylase
  • Molecular Probes