Background: Hypersensitivity to odorants like perfumes can induce or promote asthma with non-type 2 inflammation for which therapeutic options are limited. Cell death of primary bronchial epithelial cells (PBECs) and the release of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-8 are key in the pathogenesis. Extra-nasal olfactory receptors (ORs) can influence cellular processes involved in asthma. This study investigated the utility of ORs in epithelial cells as potential drug targets in this context.
Methods: We used the A549 cell line and primary bronchial epithelial cells using air-liquid interface culture system (ALI-PBECs). OR expression was investigated by RT-PCR, Western blot, and Immunofluorescence. Effects of OR activation by specific ligands on intracellular calcium concentration, cAMP, Phospholipase C (PLC), cell viability, and IL-6 and IL-8 secretion were analyzed by calcium imaging, enzyme immunoassays, Annexin V/ propidium iodide -based fluorescence-activated cell staining or by ELISA, respectively.
Results: By screening A549 cells, the OR51B5 agonists Farnesol and Isononyl Alcohol and the OR1G1 agonist Nonanal increased intracellular Ca2 + . OR51B5 and OR1G1 mRNAs and proteins were detected. Both receptors showed a preferential intracellular localization. OR51B5- but not OR1G1-induced Ca2 + dependent on both cAMP and PLC signaling. Farnesol, Isononyl Alcohol, and Nonanal, all reduced cell viability and induced IL-8 and IL-6 release. The data were verified in ALI-PBECs.
Conclusion: ORs in the lung epithelium might be involved in airway-sensitivity to odorants. Their antagonism could represent a promising strategy in treatment of odorant-induced asthma with non-type 2 inflammation.
Keywords: Inflammation; Lung epithelial cell; Odorant sensitivity; Olfactory receptor; Therapeutic targets.
© 2024. The Author(s).