Rutin (Rut) is a flavonoid with pharmacological activities such as anti-inflammatory and antioxidant. Acrylamide (ACR) is a toxic substance widely found in human life that can induce neurotoxicity. Some studies have confirmed that neurotoxicity caused by ACR induces myelin damage, which in turn causes neurological dysfunction. Therefore, we established a rutin intervention model to investigate the protective effect of Rut on ACR-induced sciatic nerve injury in rats and its mechanism. The results showed that superoxide dismutase (SOD) activity and glutathione (GSH) content increased and lactate dehydrogenase (LDH) activity decreased in the middle and high dose groups of Rut compared with the ACR group, and the expression of Myelin basic protein (MBP), Extracellular-regulated kinase 1/2(ERK1/2), Phosphorylated extracellular regulated kinase 1/2 (P-ERK1/2), and Nuclear factor E-2-associated factor (Nrf2) was promoted in the Rut-protected group, which suggests that Rutin has a protective effect on ACR-induced sciatic nerve injury and that the mechanism of Rutin's protective effect is related to activation of the ERK1/2 pathway and alleviation of oxidative stress injury.
Keywords: Acrylamide; ERK1/2 signal pathway; Oxidative stress; Rutin; Sciatic nerve injury.
Copyright © 2024 Elsevier Ltd. All rights reserved.