The study aimed to elucidate the mutational profile of patients with newly diagnosed multiple myeloma to understand correlations of alterations with clinical outcomes. A cohort of 20 patients was enrolled, and mutational analysis was conducted using the TruSight Oncology 500 DNA Kit. Identified genetic alterations were related to clinicopathologic features and treatment outcomes. A total of 724 high-quality variants were validated. All patients harbored mutations associated with the RTK-RAS pathway, with over half having alterations in PI3 K, NOTCH, and WNT pathways. Several gene mutations were associated with specific clinical characteristics and prognostic indicators, revealing a complex interplay between genetic alterations and myeloma type, standard prognostic indicators, biochemical parameters, and renal function. Genetic alterations significantly influencing progression-free survival concerned PIK3C2B, ARID1B genes, and concomitant mutations in KMT2B, FAT1, and ARID1B. The findings underscore the potential of gene mutation-based prognostic tools in enhancing clinical decision-making and suggest that further exploration of identified genetic markers could pave the way for improved prognostic stratification and targeted therapeutic interventions in multiple myeloma.
Keywords: ARID1B; FAT1; KMT2B; Multiple myeloma; Next-generation sequencing; PIK3C2B; Prognosis.
Copyright © 2024 Elsevier Inc. All rights reserved.