Objectives: Reports of traditional Chinese medicine (TCM)-related liver injury have increased over recent years; however, identifying susceptibility-related components and biomarkers remains challenging due to the heterogeneous nature of TCM and idiosyncratic drug-induced liver injury (IDILI). Psoraleae Fructus (PF) and Epimedii Folium (EF), commonly found in TCM prescriptions, have been implicated in IDILI, but their constituents and underlying mechanisms are poorly understood.
Methods: In this study, we identified bavachin (Bav) and icariin (Ica) as susceptibility components for IDILI in PF and EF using a TNF-α-mediated mouse model. Lipidomics and transcriptomics were used to investigate their related mechanism.
Results: Liver biochemistry and histopathology analyses revealed that co-exposure to Bav, Ica, and a non-toxic dose of TNF-α prestimulation induced significant liver injury, while Bav and Ica alone did not. Lipidomics identified seven differentially abundant metabolites in the Bav/Ica/TNF-α group compared to the Ica/TNF-α or Bav/TNF-α groups, mainly enriched in alpha-linolenic acid (ALA), arachidonic acid (AA), and linoleic acid (LA) metabolic pathways. Additionally, transcriptomics revealed 49 differentially expressed genes (DEGs) in the Bav/TNF-α vs Bav/Ica/TNF-α and Ica/TNF-α vs Bav/Ica/TNF-α groups, primarily associated with the PI3K/AKT/mTOR signaling pathway and sphingolipid metabolism. Integrative lipidomics and transcriptomics analyses identified significant positive correlations between five differential metabolites (DMs) - PC (O-16:0_14:1), PG (22:1_20:3), PI (16:0_14:1), PS (18:0_19:2), and TG (17:0_18:2_22:5) - and ten DEGs - Nr0b2, Btbd19, Btg2, Fam222a, Fam83f, Gtse1, Anln, Gja4, Srrm4, and Zfp13.
Conslusions: Collectively, these results suggest that alterations in intracellular metabolism and gene expression levels may contribute to the synergistic induction of IDILI by the incompatible pair Bav and Ica in the presence of TNF-α.
Keywords: Bavachin; Icariin; Idiosyncratic drug-induced liver injury; TNF; lipidomics; transcriptomics.