Novel pharmacologic inhibition of lysine-specific demethylase 1 as a potential therapeutic for glioblastoma

Cancer Gene Ther. 2024 Dec;31(12):1884-1894. doi: 10.1038/s41417-024-00847-8. Epub 2024 Nov 5.

Abstract

Lysine-specific demethylase 1 (LSD1/KDM1A) is a pivotal epigenetic enzyme that contributes to several malignancies including malignant glioma. LSD1 is a flavin adenine dinucleotide dependent histone demethylase that specifically targets histone H3 lysine (K) 4 mono- (me1) and di-methylation (me2) and H3K9me1/2 for demethylation. Herein we report the development of an LSD inhibitor, S2172, which efficiently penetrates the blood-brain barrier. S2172 effectively suppresses LSD1 enzymatic activity, resulting in the depletion of cell growth both in vitro in glioma stem cells (GSCs) (mean half-maximal inhibitory concentration (IC50) of 13.8 μM) and in vivo in a GSC orthotopic xenograft mouse model. Treatment with S2172 robustly reduced the expression of the stemness-related genes MYC and Nestin in GSC cells. Consistent with this, chromatin immunoprecipitation-sequencing revealed a significant S2172-dependent alteration in H3K4me2/H3K4me3 status. Furthermore, we identified 284 newly acquired H3K4me2 peak regions after S2172 treatment, which were encompassed within super-enhancer regions. The altered H3K4me2/H3K4me3 status induced by S2172 treatment affected the expression of genes related to tumorigenesis. Our data suggest that targeting LSD1 with S2172 could provide a promising treatment option for glioblastomas, particularly due to targeting of GSC populations.

MeSH terms

  • Animals
  • Brain Neoplasms / drug therapy
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Enzyme Inhibitors / pharmacology
  • Enzyme Inhibitors / therapeutic use
  • Glioblastoma* / drug therapy
  • Glioblastoma* / genetics
  • Glioblastoma* / metabolism
  • Glioblastoma* / pathology
  • Histone Demethylases* / antagonists & inhibitors
  • Histone Demethylases* / genetics
  • Histone Demethylases* / metabolism
  • Histones / metabolism
  • Humans
  • Mice
  • Neoplastic Stem Cells / drug effects
  • Neoplastic Stem Cells / metabolism
  • Xenograft Model Antitumor Assays

Substances

  • Histone Demethylases
  • KDM1A protein, human
  • Enzyme Inhibitors
  • Histones