Localized High-Concentration Electrolyte for All-Carbon Rechargeable Dual-Ion Batteries with Durable Interfacial Chemistry

Angew Chem Int Ed Engl. 2024 Oct 30:e202416610. doi: 10.1002/anie.202416610. Online ahead of print.

Abstract

Lithium-based rechargeable dual-ion batteries (DIBs) based on graphite anode-cathode combinations have received much attention due to their high resource abundance and low cost. Currently, the practical realization of the batteries is hindered by easy oxidation of the electrolyte at the cathode interface, and solvent co-intercalation at the anode-electrolyte interface. Configuration of a "solvent-in-salt" electrolyte with a high concentration of Li salt is expected to stabilize the electrolyte chemistry versus both electrodes, yet inevitably reduces the mobility of the solvated working ions and increases the cost of the electrolyte. Herein, we propose to build a localized high-concentration electrolyte by adding hydrofluoroether as the diluent to reduce the salt content while improving the solvation structure, allowing more anions to enter the inner solvation sheath. The new electrolyte helps to form uniform and thin interfaces, with elevated contents of inorganic fluorides, on both electrodes, which effectively suppress electrolyte oxidation at the cathode and optimize electrolyte-electrode compatibility at the anode while facilitating charge transfer across the interface. Consequently, the DIBs with graphite as anode and cathode operate for 3000 cycles and retain a high-capacity retention of 95.7 %, highlighting the importance of stable interfacial chemistry in boosting the electrochemical performance of DIBs.

Keywords: carbon; durable interfacial chemistry; electrode; localized high-concentration electrolyte; rechargeable dual-ion batteries.