Macrophage membrane-functionalized manganese dioxide nanomedicine for synergistic treatment of atherosclerosis by mitigating inflammatory storms and promoting cholesterol efflux

J Nanobiotechnology. 2024 Oct 28;22(1):664. doi: 10.1186/s12951-024-02939-x.

Abstract

Atherosclerosis (AS) poses a significant threat to human life and health. However, conventional antiatherogenic medications exhibit insufficient targeting precision and restricted therapeutic effectiveness. Moreover, during the progression of AS, macrophages undergo polarization toward the proinflammatory M1 phenotype and generate reactive oxygen species (ROS) to accelerate the occurrence of inflammatory storms, and ingest excess lipids to form foam cells by inhibiting cholesterol efflux. In our study, we developed a macrophage membrane-functionalized hollow mesoporous manganese dioxide nanomedicine (Col@HMnO2-MM). This nanomedicine has the ability to evade immune cell phagocytosis, enables prolonged circulation within the body, targets the inflammatory site of AS for effective drug release, and alleviates the inflammatory storm at the AS site by eliminating ROS. Furthermore, Col@HMnO2-MM has the ability to generate oxygen autonomously by breaking down surplus hydrogen peroxide generated at the inflammatory AS site, thereby reducing the hypoxic microenvironment of the plaque by downregulating hypoxia-inducible factor (HIF-1α), which in turn enhances cholesterol efflux to inhibit foam cell formation. In an APOE-/- mouse model, Col@HMnO2-MM significantly reduced inflammatory factor levels, lipid storage, and plaque formation without significant long-term toxicity. In summary, this synergistic treatment significantly improved the effectiveness of nanomedicine and may offer a novel strategy for precise AS therapy.

Keywords: Atherosclerosis; Cholesterol efflux; Hollow mesoporous manganese dioxide; Inflammatory storm; Macrophage membranes.

MeSH terms

  • Animals
  • Atherosclerosis* / drug therapy
  • Atherosclerosis* / metabolism
  • Cell Membrane / metabolism
  • Cholesterol* / chemistry
  • Cholesterol* / metabolism
  • Disease Models, Animal
  • Foam Cells / drug effects
  • Foam Cells / metabolism
  • Humans
  • Inflammation / drug therapy
  • Macrophages* / drug effects
  • Macrophages* / metabolism
  • Male
  • Manganese Compounds* / chemistry
  • Manganese Compounds* / pharmacology
  • Mice
  • Mice, Inbred C57BL
  • Nanomedicine* / methods
  • Oxides* / chemistry
  • Oxides* / pharmacology
  • RAW 264.7 Cells
  • Reactive Oxygen Species / metabolism

Substances

  • Oxides
  • Manganese Compounds
  • Cholesterol
  • manganese dioxide
  • Reactive Oxygen Species