Background: In recent decades, there has been a startling rise in the number of cancer patients worldwide, which has led to an amazing upsurge in the development of novel anticancer treatment candidates. On a positive note, arylpiperazines have garnered attention in cancer research due to their potential as scaffolds for developing anticancer agents. These compounds exhibit a diverse array of biological activities, including cytotoxic effects against cancer cells. Indeed, one of the key advantages of arylpiperazines lies in their ability to interact with various molecular targets implicated in cancer pathogenesis. Aim: Here, we focus on the chemical structures of several arylpiperazine derivatives, highlighting their anti-proliferative activity in different tumor cell lines. The modular structure, diverse biological activities, and potential for combination therapies of arylpiperazine compounds make them valuable candidates for further preclinical and clinical investigations in the fight against cancer. Conclusion: This review, providing a careful analysis of different arylpiperazines and their biological applications, allows researchers to refine the chemical structures to improve potency, selectivity, and pharmacokinetic properties, thus advancing their therapeutic potential in oncology.
Keywords: anti-proliferative agents; arylpiperazine; cancer; small molecules.