Borderline ovarian tumors (BOTS) are rare neoplasms of intermediate aggressiveness between cystadenomas and low-grade ovarian cancers (lgOvCa), which they share some molecular resemblances with. In contrast to the most frequent and well-described high-grade ovarian carcinomas (hgOvCa), the molecular background of BOTS and lgOvCa is less thoroughly characterized. Here, we aimed to analyze genetic variants in crucial tumor suppressors and oncogenes in BOTS (with or without the BRAF V600E mutation), lgOvCa, and hgOvCa in two gene panels using next-generation sequencing. Then, we verified the existence of selected polymorphisms by Sanger sequencing. Finally, Western blot analyses were carried out to check the impact of the selected polymorphisms on the expression of the corresponding proteins. Our study contributes to the molecular characterization of ovarian neoplasms, demonstrating divergent polymorphic patterns pointing to distinct signaling pathways engaged in their development. Certain mutations seem to play an important role in BOTS without the BRAF V600E variant (KRAS) and in lgOvCa (KRAS and NRAS), but not in hgOvCa. Additionally, based on multivariable regression analyses, potential biomarkers in BOTS (PARP1) and hgOvCa (FANCI, BRCA2, TSC2, FANCF) were identified. Noteworthy, for some of the analyzed genes, such as FANCI, FANCD2, and FANCI, FANCF, TSC2, the status of BRCA1/2 and TP53, respectively, turned out to be crucial. Our results shed new light on the similarities and differences in the polymorphic patterns between ovarian tumors of diverse aggressiveness. Furthermore, the biomarkers identified herein are of potential use as predictors of the prognosis and/or response to therapy.
Keywords: BRAF; BRCA1/2; DNA sequence variant; NGS; RAS; TP53; Western blot; borderline ovarian tumor; ovarian cancer.