Study objectives: The umbrella term "Disorders of Arousal" (DoA), encompassing sleepwalking, confusional arousals, and sleep terrors, refers to parasomnias manifesting during non-rapid eye movement (NREM) sleep, commonly thought to arise from an aberrant arousal process. While previous studies have detailed EEG changes linked to DoA episodes, it remains uncertain how these alterations differ from a physiological arousal process. This study directly compared brain activity between DoA episodes and arousals associated with physiological movements (motor arousal) in individuals with DoA and healthy sleepers.
Methods: Fifty-three adult patients with DoA (25 males, 32.2±15.5years) and 33 control subjects (14 males, 31.4±11.4years) underwent one or more home-EEG recordings. A semiparametric regression model was employed to elucidate the complex relationship between EEG activity across channels, within and across different groups, including motor arousals in DoA (n=169), parasomnia episodes in DoA (n=361), and motor arousals in healthy sleepers (n=137).
Results: Parasomnia episodes and motor arousals in both groups were preceded by a diffuse increase in slow-wave activity (SWA) and beta power, and a widespread decrease in sigma power. However, motor arousals in DoA displayed lower beta and central sigma than in healthy sleepers. Within DoA patients, episodes were preceded by lower beta, frontal sigma, and higher SWA than motor arousals.
Conclusions: Our findings suggest that the arousal process is altered in DOA patients, and that specific EEG patterns are required for DOA episodes to emerge. These insights will help guide future research into the underlying circuits and objective markers of DOA.
Keywords: Electroencephalography; NREM Parasomnias; Sleep Spindles; Somnambulism; Topography.
© The Author(s) 2024. Published by Oxford University Press on behalf of Sleep Research Society. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.