Protein-based emulsion gels are an ideal delivery system due to their unique structure, remarkable encapsulation efficiency, and tunable digestive behavior. Freshwater mussel (Solenaia oleivora) protein isolate (SoPI), an emerging sustainable protein with high nutritional value, possesses unique value in the development of functional foods. Herein, composite emulsion gels were fabricated with SoPI and κ-carrageenan (κ-CG) for the delivery of curcumin. SoPI/κ-CG stabilized emulsions possessed a high encapsulation efficiency of curcumin with a value of around 95%. The addition of κ-CG above 0.50% facilitated the emulsion gel formation and significantly improved the gel strength with 1326 g. Furthermore, the storage and digestive stability of curcumin were significantly improved as the κ-CG concentration increased. At 1.50% κ-CG, around 80% and 90% curcumin remained after 21-day storage at 45 °C and the 6 h in vitro gastrointestinal digestion, respectively. The addition of 0.50% κ-CG obtained the highest bioaccessibility of curcumin (~60%). This study illustrated the potential of SoPI emulsion gels as a carrier for stabilizing and delivering hydrophobic polyphenols.
Keywords: aquatic protein; bioaccessibility; cold-set emulsion gel; encapsulation; in vitro digestion; κ-carrageenan.