Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid deposition within the arterial intima, as well as fibrous tissue proliferation and calcification. AS has long been recognized as one of the primary pathological foundations of cardiovascular diseases in humans. Its pathogenesis is intricate and not yet fully elucidated. Studies have shown that AS is associated with oxidative stress, inflammatory response, lipid deposition, and changes in cell phenotype. Unfortunately, there is currently no effective prevention or targeted treatment for AS. The rapid advancement of omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, has opened up novel avenues to elucidate the fundamental pathophysiology and associated mechanisms of AS. Here, we review articles published over the past decade and focus on the current status, challenges, limitations, and prospects of omics in AS research and clinical practice. Emphasizing potential targets based on omics technologies will improve our understanding of this pathological condition and assist in the development of potential therapeutic approaches for AS-related diseases.
Keywords: Atherosclerosis; Genomics; Metabolomics; Microbiomics; Omics; Proteomics; Transcriptomics.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.