Enhancing the efficiency of phytoremediation using water hyacinth (Eichhornia crassipes) for 2,4-dichlorophenoxyacetic acid removal with modified biochar as an assisted agent

Chemosphere. 2024 Nov:367:143591. doi: 10.1016/j.chemosphere.2024.143591. Epub 2024 Oct 22.

Abstract

This study explores an innovative integrated system for removing the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from aquatic environments, utilizing a combination by modified biochar derived from waste biomass of palm kernel shells (PKS-BM) and water hyacinth (Eichhornia crassipes). The characterization of the biochar revealed significant surface functional groups, a substantial surface area, and a mesoporous structure conducive to adsorption application. Biochar-assisted phytoremediation demonstrated markedly higher removal efficiencies of 2,4-D as compared to phytoremediation alone, achieving up to 98.7%, 96.9%, and 90.3% removal efficiency for 2,4-D concentrations of 50 mg/L, 100 mg/L, and 150 mg/L, respectively. Additionally, the presence of biochar significantly enhanced the morphological growth of Eichhornia crassipes, particularly under higher concentrations of 2,4-D, by mitigating toxic effects and supporting healthier plant development. These findings suggest that integrating biochar into phytoremediation system offers a promising, sustainable approach for effectively removing herbicides from contaminated water bodies while also promoting plant health and growth.

Keywords: 2,4-D; Eichhornia crassipes; Palm kernel shell; Phytoremediation.

MeSH terms

  • 2,4-Dichlorophenoxyacetic Acid* / metabolism
  • Adsorption
  • Biodegradation, Environmental*
  • Biomass
  • Charcoal* / chemistry
  • Eichhornia* / metabolism
  • Herbicides* / chemistry
  • Herbicides* / metabolism
  • Water Pollutants, Chemical* / metabolism

Substances

  • 2,4-Dichlorophenoxyacetic Acid
  • Charcoal
  • biochar
  • Herbicides
  • Water Pollutants, Chemical