The direct alloresponse, pivotal in transplant rejection, occurs when recipient T cells recognize intact allogeneic peptide-major histocompatibility complex (pMHC) complexes. Despite extensive research, our understanding of alloreactive CD8+ T cells against an individual MHC allele in humans remains limited, especially their precursor frequency, MHC specificity, and peptide specificity. By using K562 cell-based artificial antigen-presenting cells expressing human leukocyte antigen (HLA)-A∗01:01, HLA-A∗02:01, or HLA-A∗03:01, we determined that the precursor frequency of alloreactive CD8+ T cells against a single MHC allele ranges from 0.1% to 0.5%. Further, these cells exhibited MHC specificity regarding proliferation, activation, interferon gamma secretion, and cytolytic ability, with limited crossreactivity toward nontargeted MHC alleles. Focusing on anti-A2 alloreactive CD8+ T cells, we developed a peptide-exchangeable artificial antigen-presenting cell that displays selected peptides on HLA-A∗02:01. From a set of 95 computationally curated A2-restricted peptides most abundant in renal tubular cells, we identified 2 immunogenic kidney peptides across multiple donors. Overall, our findings significantly enhance the understanding of direct alloresponse and provide a toolkit for future mechanistic studies and reproducible patient monitoring.
Keywords: CD8(+) T cells; alloantigen; crossreactivity; direct allorecognition; precursor frequency; specificity.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.