New S-substituted-3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one scaffold with promising anticancer activity profile through the regulation and inhibition of mutated B-RAF signaling pathway

Drug Dev Res. 2024 Nov;85(7):e70007. doi: 10.1002/ddr.70007.

Abstract

Novel 3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives were synthesized and screened for their antiproliferative activity against a panel of 60 cancer cell lines. Derivatives 5b, 5f, and 9c showed significant antitumor activity at a single dose with mean growth inhibition of 55.62%, 55.79%, and 71.40%, respectively. These compounds were further investigated against HCT-116, colon cancer cell line, and FHC, normal colon cell line. Compound 9c showed the highest activity with IC50 = 0.904 ± 0.03 µM and SI = 20.42 excelling doxorubicin which scored IC50 = 2.556 ± 0.09 µM and SI = 6.19. Compound 9c was also the most potent against B-RAFWT and mutated B-RAFV600E with IC50 = 0.145 ± 0.005 and 0.042 ± 0.002 µM, respectively in comparison with vemurafenib with IC50 = 0.229 ± 0.008 and 0.038 ± 0.001 µM, respectively. The cell cycle analysis showed that 9c increased the cell population and induced an arrest in the cell cycle of HCT-116 cancer cells at the G0-G1 stage with 1.23-fold. Apoptosis evaluation showed that compound 9c displayed an 18.18-fold elevation in total apoptosis of HCT-116 cancer cells in comparison to the control. Compound 9c increased the content of caspase-3 by 3.52-fold versus the control. A molecular modeling study determined the binding profile and interaction of 9c with the B-RAF active site.

Keywords: apoptosis; caspase‐3; colon cancer; mutated B‐RAF; thieno[2,3‐d]pyrimidine.

MeSH terms

  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Drug Screening Assays, Antitumor
  • HCT116 Cells
  • Humans
  • Molecular Docking Simulation
  • Mutation
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins B-raf* / antagonists & inhibitors
  • Proto-Oncogene Proteins B-raf* / genetics
  • Pyrimidines* / chemical synthesis
  • Pyrimidines* / chemistry
  • Pyrimidines* / pharmacology
  • Signal Transduction* / drug effects
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Proto-Oncogene Proteins B-raf
  • Pyrimidines
  • BRAF protein, human
  • Protein Kinase Inhibitors