Fibroblast Growth Factor 21 Suppressed Neutrophil Extracellular Traps Induced by Myocardial Ischemia/Reperfusion Injury via Adenosine Monophosphate-Activated Protein Kinase

Cardiol Res. 2024 Oct;15(5):404-414. doi: 10.14740/cr1705. Epub 2024 Oct 11.

Abstract

Background: Previous investigations have established the anti-inflammatory properties of fibroblast growth factor 21 (FGF21). However, the specific mechanism through which FGF21 mitigates myocardial ischemia/reperfusion (I/R) injury by inhibiting neutrophil extracellular traps (NETs) remains unclear.

Methods: A mice model of myocardial I/R injury was induced, and myocardial tissue was stained with immunofluorescence to assess NETs. Serum NETs levels were quantified using a PicoGreen kit. In addition, the expression levels of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and FGF21 were evaluated by Wes fully automated protein blotting quantitative analysis system. Moreover, a hypoxia/reoxygenation (H/R) model was established using AMPK inhibitor and agonist pretreated H9c2 cells to further explore the relationship between FGF21 and AMPK.

Results: Compared with the control group, serum NETs levels were significantly higher in I/R mice, and a large number of NETs were formed in myocardial tissues (97.63 ± 11.45 vs. 69.65 ± 3.33, P < 0.05). However, NETs levels were reversed in FGF21 pretreated mice (P < 0.05). Further studies showed that FGF21 enhanced AMPK expression, which was significantly increased after inhibition of AMPK and decreased after promotion of AMPK (P < 0.05).

Conclusions: FGF21 may exert cardioprotective effects by inhibiting I/R injury-induced NETs via AMPK.

Keywords: AMP-activated protein kinase; Fibroblast growth factor 21; Myocardial ischemia/reperfusion injury; Neutrophil extracellular traps.

Grants and funding

This research was supported by the development fund of Affiliated Hospital of Xuzhou Medical University (grant no. XYFY2021029), Medical Research Program of Jiangsu Provincial Health and Wellness Commission (grant no. Z2021042), and Jiangyin Young and Middle-aged Reserve Excellent Talents Program (grant no. JYROYT202309).