First applications of ultrasound technology in solid rocket propellant combustion promotion

Ultrason Sonochem. 2024 Oct 15:111:107107. doi: 10.1016/j.ultsonch.2024.107107. Online ahead of print.

Abstract

The regulation of propellant combustion using ultrasonic waves is proposed. Under ultrasonic frequencies of 25-40 kHz, we systematically examined the combustion characteristics of Al particles, ammonium perchlorate (AP)/hydroxyl-terminated polybutadiene (HTPB) propellants, and Al-containing Al/AP/HTPB propellants. Ultrasonic treatment increased the ignition delay time of the Al particles by 48.3 %. However, it increased the burning rate of the AP/HTPB propellants by up to 26.1 % and decreased their ignition delay by 39.3 %. As the ultrasonic frequency increased, the burning rate of the solid Al/AP/HTPB propellants increased by 22.5 %, and the degree of Al agglomeration decreased, resulting in a 24 % decrease in the size of the condensed-phase combustion products. The action mechanism was analyzed in terms of the effects of ultrasonic waves on Al droplets and combustion flames. The introduction of ultrasonic waves split the Al droplets near the burning surface into smaller particles, which affected combustion efficiency. Bringing the diffusion flame closer to the burning surface affected the burning rate. These findings demonstrate that the combustion and agglomeration characteristics of solid propellants can be modified using ultrasonic techniques, providing a new method for controlling the thrust of solid rocket motors.

Keywords: Aluminum particles; Combustion; Solid composite propellants; Solid rocket motor; Ultrasound.