Flexible multimaterial fibers in modern biomedical applications

Natl Sci Rev. 2024 Sep 23;11(10):nwae333. doi: 10.1093/nsr/nwae333. eCollection 2024 Oct.

Abstract

Biomedical devices are indispensable in modern healthcare, significantly enhancing patients' quality of life. Recently, there has been a drastic increase in innovations for the fabrication of biomedical devices. Amongst these fabrication methods, the thermal drawing process has emerged as a versatile and scalable process for the development of advanced biomedical devices. By thermally drawing a macroscopic preform, which is meticulously designed and integrated with functional materials, hundreds of meters of multifunctional fibers are produced. These scalable flexible multifunctional fibers are embedded with functionalities such as electrochemical sensing, drug delivery, light delivery, temperature sensing, chemical sensing, pressure sensing, etc. In this review, we summarize the fabrication method of thermally drawn multifunctional fibers and highlight recent developments in thermally drawn fibers for modern biomedical application, including neural interfacing, chemical sensing, tissue engineering, cancer treatment, soft robotics and smart wearables. Finally, we discuss the existing challenges and future directions of this rapidly growing field.

Keywords: biomedical devices; biomedical fiber; functional fiber; thermal drawing.

Publication types

  • Review