Reducing Interfacial Recombination in Inverted Perovskite Solar Cells With Selenophene-Substituted PCBM: Comparison With Thiophene and Furan Substitution

ChemSusChem. 2025 Jan 14;18(2):e202400901. doi: 10.1002/cssc.202400901. Epub 2024 Oct 16.

Abstract

Reducing the interfacial recombination and improving the charge transfer capability of charge transport layers are effective strategies to enhance the efficiency and stability of perovskite solar cells (PSCs). This study evaluates, for the first time, the effects of selenophene substitution in the chemical structure of phenyl-butyric acid methyl ester (PCBM) on the performance and stability of inverted PSCs. Selenophene substitution was compared to thiophene and furan substitutions, and the reference PCBM without chalcogenophene moiety. Additionally, this study investigates the differences between using the fullerene cages C70 and C60 in the PCBM chemical structure. The photovoltaic results demonstrate that, with an adequate control of the thickness of the electron transport layer (ETL), incorporating the selenophene moiety in the structures of fullerenes enhances the photovoltaic parameters of PSCs. This improvement results from the reduction in trap-assisted recombination, an increase in electron mobility, and the improved charge extraction processes. The use of C70, as opposed to C60, allows for the preparation of a series of ETLs with comparable thicknesses, although slightly lower efficiencies. This feature facilitates a systematic comparative analysis focused on variations in the electron properties of ETLs, thereby avoiding the inclusion of issues related to thickness and charge recombination processes.

Keywords: Electron transport materials; Fullerenes; Interfacial charge recombination; Perovskite solar cells; Trap states.