Optimization of Mechanical Properties during Cold Rolling and Wrap-Forming for Metal Helical Tubes

Materials (Basel). 2024 Sep 30;17(19):4832. doi: 10.3390/ma17194832.

Abstract

The proposed method involves the utilization of a strip roll-forming technique to fulfill the specific requirements for constructing large-scale structures in orbit and space station trusses during extraterrestrial exploration. This involves progressively rolling out a metal strip with an L+V-shaped locking edge through multiple passes of forming rolls featuring different section shapes. The process of helical locking enables the formation of a slender, spiral-shaped tube, which can be utilized for the in-orbit assembly of exceptionally large structures. The proposed approach introduces a two-step optimization method to enhance the maximum stress, equivalent plastic strain, and wrapping torque of roll-forming L+V cross-sections and wrap-forming helical tubes. The optimized sample points in the second step are established based on the optimal roll distance and roll gap obtained in the first optimal step, resulting in the determination of the optimal folding height and V-shaped angle of the L+V strip cross-section after optimization. The design of the strip wrapping configuration that follows is highly dependent on these four parameters.

Keywords: equivalent plastic strain; helical wrapping tube; in-orbit roll-forming strip; maximum stress; optimization; response surface method; torque.