Capillary pressure and permeability of porous media are important for heat transfer devices, including loop heat pipes. In general, smaller pore sizes enhance capillary pressure but decrease permeability. Introducing a bi-porous structure is promising for solving this trade-off relation. In this study, the bi-porous aluminum was fabricated by the space holder method using two different-sized NaCl particles (approximately 400 and 40 μm). The capillary pressure and permeability of the bi-porous Al were evaluated and compared with those of mono-porous Al fabricated by the space holder method. Increasing the porosity of the mono-porous Al improved the permeability but reduced the capillary pressure because of better-connected pores and increased effective pore size. The fraction of large and small pores in the bi-porous Al was successfully controlled under a constant porosity of 70%. The capillary pressure of the bi-porous Al with 40% large and 30% small pores was higher than the mono-porous Al with 70% porosity without sacrificing the permeability. However, the bi-porous Al with other fractions of large and small pores did not exhibit properties superior to the mono-porous Al. Thus, accurately controlling the fractions of large and small pores is required to enhance the capillary performance by introducing the bi-porous structure.
Keywords: aluminum foam; bi-porous structure; capillary pressure; permeability; space holder.