Chiral pincer complexes, characterized by their rigid tridentate coordination framework, have emerged as powerful catalysts in asymmetric synthesis. This review provides a comprehensive overview of recent advancements in the development of chiral pincer-type ligands and their corresponding transition metal complexes. We highlight the latest progress in their application across a range of catalytic asymmetric reactions, including the (transfer) hydrogenation of polar and non-polar bonds, hydrophosphination, alkynylation, Friedel-Crafts reactions, enantioselective reductive cyclization of alkynyl-tethered cyclohexadienones, enantioselective hydrosilylation, as well as Aza-Morita-Baylis-Hillman reactions. The structural rigidity and tunability of chiral pincer complexes enable precise control over stereoselectivity, resulting in high enantioselectivity and efficiency in complex molecular transformations. As the field advances, innovations in ligand design and the exploration of new metal centers are expected to expand the scope and utility of these catalysts, bearing significant implications for the synthesis of enantioenriched compounds in pharmaceuticals, materials science, and beyond.
Keywords: asymmetric catalysis; chiral pincer complexes; chiral-type ligands; enantioenriched compounds; enantioselectivity.