Effect of Phase Structure on the Viscoelasticity and Mechanical Properties of Isotactic Polypropylene Multicomponents Polymerized with Non-Conjugated α,ω-Diene

Polymers (Basel). 2024 Sep 25;16(19):2715. doi: 10.3390/polym16192715.

Abstract

Increasing of rubber content in isotactic polypropylene/ethylene-propylene rubber (iPP/EPR) alloys can extend the applications of this kind of polyolefin. The EPR content and phase structure of isotactic polypropylene multicomponents have great effect on the viscoelasticity and mechanical properties. iPP/EPR in-reactor alloys with a high EPR content were obtained through the in situ crosslinking of EPR chains with α,ω-diene. The morphological observation results indicate that the crosslinked iPP/EPR in-reactor alloys have a good spherical shape with clean and rough external surfaces. The high EPR content is finely dispersed in the crosslinked iPP/EPR alloys in areas ranging in size from tens of nanometers to several micrometers, which implies that a sufficient crosslinking degree of EPR chains can effectively prevent their aggregation and restrict macro-phase separation. The rheological results show a clear plateau in the terminal region, which reveals an entangled polymer chain network in the crosslinked iPP/EPR alloys. The well-dispersed EPR and the bi-continuous phase structure have a great effect on the mechanical properties of the isotactic polypropylene multicomponent which were assessed.

Keywords: crosslinking; high EPR content; iPP/EPR in-reactor alloys; mechanical properties; phase structure.