Digital PCR threshold robustness analysis and optimization using dipcensR

Brief Bioinform. 2024 Sep 23;25(6):bbae507. doi: 10.1093/bib/bbae507.

Abstract

Digital polymerase chain reaction (dPCR) is a best-in-class molecular biology technique for the accurate and precise quantification of nucleic acids. The recent maturation of dPCR technology allows the quantification of up to thousands of targeted nucleic acids per instrument per day. A key step in the dPCR data analysis workflow is the classification of partitions into two classes based on their partition intensities: partitions either containing or lacking target nucleic acids of interest. Much effort has been invested in the design and tailoring of automated dPCR partition classification procedures, and such procedures will be increasingly important as the technology ventures into high-throughput applications. However, automated partition classification is not fail-safe, and evaluation of its accuracy is highly advised. This accuracy evaluation is a manual endeavor and is becoming a bottleneck for high-throughput dPCR applications. Here, we introduce dipcensR, the first data-analysis procedure that automates the assessment of any linear partition classifier's partition classification accuracy, offering potentially substantial efficiency gains. dipcensR is based on a robustness evaluation of said partition classification and flags classifications with low robustness as needing review. Additionally, dipcensR's robustness analysis underpins (optional) automatic optimization of partition classification to achieve maximal robustness. A freely available R implementation supports dipcensR's use.

Keywords: accuracy; digital PCR; multiplexing; partition classification; thresholding.

MeSH terms

  • Algorithms
  • Polymerase Chain Reaction* / methods
  • Software