Characterization of microbiome, resistome, mobilome, and virulome in anoxic and oxic wastewater treatment processes in Slovakia and Taiwan

Heliyon. 2024 Sep 30;10(19):e38723. doi: 10.1016/j.heliyon.2024.e38723. eCollection 2024 Oct 15.

Abstract

This study presents a comprehensive analysis of samples from urban wastewater treatment plants using anoxic/oxic processes in Slovakia and Taiwan, focusing on microbiome, resistome, mobilome, and virulome, which were analyzed using a shotgun metagenomic approach. Distinct characteristics were observed; in Taiwan, a higher abundance and diversity of antibiotic resistance genes were found in both influent and effluent samples, while there was a higher prevalence of mobile genetic elements and virulence factor genes in Slovakia. Variations were noted in microbial community structures; influent samples in Taiwan were reflected from fecal and hospital sources, and those in Slovakia were derived from environmental elements. At the genus level, the samples from Taiwan's sewage treatment plants were dominated by Cloacibacterium and Bacteroides, while Acinetobacter was predominant in samples from Slovakia. Despite similar antibiotic usage patterns, distinct wastewater characteristics and operational disparities influenced microbiome, resistome, mobilome, and virulome compositions, with limited reduction of most resistance genes by the studied anoxic/oxic processes. These findings underscore the importance of region-specific insights into microbial communities for understanding the dynamics of antimicrobial resistance and pathogenicity in urban wastewater treatment systems. Such insights may lay the groundwork for optimizing treatment processes and reducing the dissemination of antibiotic resistance and pathogenicity genes for safeguarding public health.

Keywords: Microbiome; Mobilome; Resistome; Urban wastewater; Virulome.