Percolation-Induced PT Symmetry Breaking

Phys Rev Lett. 2024 Sep 27;133(13):136602. doi: 10.1103/PhysRevLett.133.136602.

Abstract

We propose a new avenue in which percolation, which has been much associated with critical phase transitions, can also dictate the asymptotic dynamics of non-Hermitian systems by breaking PT symmetry. Central to it is our newly designed mechanism of topologically guided gain, where chiral edge wave packets in a topological system experience non-Hermitian gain or loss based on how they are topologically steered. For sufficiently wide topological islands, this leads to irreversible growth due to positive feedback from interlayer tunneling. As such, a percolation transition that merges small topological islands into larger ones also drives the edge spectrum across a real to complex transition. Our discovery showcases intriguing dynamical consequences from the triple interplay of chiral topology, directed gain, and interlayer tunneling, and suggests new routes for the topology to be harnessed in the control of feedback systems.