Electrohydrodynamic Printing of Microscale Fibrous Scaffolds with a Sinusoidal Structure for Enhancing the Contractility of Cardiomyocytes

ACS Biomater Sci Eng. 2024 Oct 10. doi: 10.1021/acsbiomaterials.4c00527. Online ahead of print.

Abstract

Mimicking the curved collagenous fibers in the cardiac extracellular matrix to fabricate elastic scaffolds in vitro is important for cardiac tissue engineering. Here, we developed sinusoidal polycaprolactone (PCL) fibrous scaffolds with commendable flexibility and elasticity to enhance the contractility of primary cardiomyocytes by employing melt-based electrohydrodynamic (EHD) printing. Microscale sinusoidal PCL fibers with an average diameter of ∼10 μm were printed to mimic the collagenous fibers in the cardiac ECM. The sinusoidal PCL fibrous scaffolds were EHD-printed in a layer-by-layer manner and exhibited outstanding flexibility and elasticity compared with the straight ones. The sinusoidal PCL scaffolds provided an elastic microenvironment for the attaching and spreading of primary cardiomyocytes, which facilitated their synchronous contractive activities. Primary cardiomyocytes also showed improved gene expression and maturation on the sinusoidal PCL scaffolds under electrical stimulation for 5 days. It is envisioned that the proposed flexible fibrous scaffold with biomimetic architecture may serve as a suitable patch for tissue regeneration and repair of damaged hearts after myocardial infarction.

Keywords: cardiac tissue engineering; electrohydrodynamic printing; flexible scaffolds; sinusoidal fibers.