Background: Jasmonic acid (JA) is an important phytohormone used to defend against herbivores, but it does not respond to whitefly feeding. Conversely, another phytohormone, salicylic acid (SA), is induced when plants are fed upon by whiteflies. JA has a better anti-whitefly effect than SA; however, there is limited research on how to effectively improve plant resistance by utilizing the different responses of these phytohormones to whitefly feeding.
Results: We discovered that protease inhibitors 8 (PI8) and terpene synthase 10 (TPS10) located downstream of the JA-regulated pathway in plants have anti-whitefly effects, but these two genes were not induced by whitefly feeding. To identify whitefly-inducible promoters, we compared the transcriptome data of tobacco fed upon by Bemisia tabaci with the control. We focused on pathogenesis-related (PR) genes because they are known to be induced by SA. Among these PR genes, we found that expression levels of pathogenes-related protein 1C-like (PR1) and glucose endo-1,3-beta-glucosidase (BGL) can be significantly induced by whitefly feeding and regulated by SA. We then engineered the whitefly-inducible promoters of BGL and PR1 to drive the expression of PI8 and TPS10. We found that compared with control plants that did not induce the expression of PI8 or TPS10, transformed plants expressing PI8 or TPS10 under the PR1 or BGL promoter showed a significant increase in the expression levels of PI8 and TPS10 after whitefly infection, significantly improving their resistance to whiteflies.
Conclusion: Our findings suggest that using SA-inducible promoters as tools to drive the expression of JA-regulated defense genes can enhance plant resistance to whiteflies. Our study provides a novel pathway for the enhancement of plant resistance against insects. © 2024 Society of Chemical Industry.
Keywords: inducible promoter; jasmonic acid; plant resistance; salicylic acid; whitefly.
© 2024 Society of Chemical Industry.