Dual Fe/I Single-Atom Electrocatalyst for High-Performance Oxygen Reduction and Wide-Temperature Quasi-Solid-State Zn-Air Batteries

Adv Mater. 2024 Oct 10:e2412978. doi: 10.1002/adma.202412978. Online ahead of print.

Abstract

Oxygen reduction reaction (ORR) electrocatalysts are essential for widespread application of quasi-solid-state Zn-air batteries (ZABs), but the well-known Fe-N-C single-atom catalysts (SACs) suffer from low activity and stability because of unfavorable strong adsorption of oxygenated intermediates. Herein, the study synthesizes dual Fe/I single atoms anchored on N-doped carbon nanorods (Fe/I-N-CR) via a metal-organic framework (MOF)-mediated two-step tandem-pyrolysis method. Atomic-level I doping modulates the electronic structure of Fe-Nx centers via the long-range electron delocalization effect. Benefitting from the synergistic effect of dual Fe/I single-atom sites and the structural merits of 1D nanorods, the Fe/I-N-CR catalyst shows excellent ORR activity and stability, superior to Pt/C and Fe or I SACs. When the Fe/I-N-CR is employed as cathode for quasi-solid-state ZABs, a high power density of 197.9 mW cm-2 and an ultralong cycling lifespan of 280 h at 20 mA cm-2 are both achieved, greatly exceeding those of commercial Pt/C+IrO2 (119.1 mW cm-2 and 47 h). In addition, wide-temperature adaptability and superior stability from -40 to 60 °C are realized for the Fe/I-N-CR-based quasi-solid-state ZABs. This work provides a MOF-mediated two-step tandem-pyrolysis strategy to engineer high-performance dual SACs with metal/nonmetal centers for ORR and sustainable ZABs.

Keywords: dual Fe/I single atoms; oxygen reduction reaction; quasi‐solid‐state Zn‐air batteries; wide‐temperature adaptability.