The survival rate of glioma patients has not significantly increased in recent years despite aggressive treatment and advances in immunotherapy. The limited response to treatments is partially attributed to the immunosuppressive tumor microenvironment, where regulatory T cells (Tregs) play a pivotal role in immunological tolerance. In this study, we investigated the impact of complement factor H (FH) on Tregs within the glioma microenvironment and found that FH is an ICOS ligand. The binding of FH to this immune checkpoint molecule promoted the survival and function of Tregs and induced the secretion of TGF-beta (TGF-β) and IL-10, while also suppressing T-cell proliferation. We further demonstrated that cancer cells in human and mouse gliomas directly produce FH. Database investigations revealed that upregulation of FH expression was associated with the presence of Tregs and correlated with worse prognosis for glioma patients. We confirmed the effect of FH on glioma development in a mouse model, where FH knockdown was associated with decrease in number of ICOS+ Tregs and demonstrated a tendency of prolonged survival (p=0.064). Since the accumulation of Tregs represents a promising prognostic and therapeutic target, evaluating FH expression should be considered when assessing the effectiveness of and resistance to immunotherapies against glioma.