Brazil is one of the world's leading producers of staple foods and bioethanol. Lignocellulosic residual sources have been proposed as a promising feedstock for 2G bioethanol and to reduce competition between food and fuels. This work aims to discuss residual biomass from Brazilian agriculture as lignocellulosic feedstock for 2G bioethanol production as bagasse, stalk, stem, and peels, using biorefining concepts to increase ethanol yields. Herein, we focused on biomass chemical characteristics, pretreatment, microorganisms, and optimization of process parameters that define ethanol yields for bench-scale fermentation. Although several techniques, such as carbon capture, linking enzymes to supports, and a consortium of microorganisms, emerge as future alternatives in bioethanol synthesis, these technologies entail necessary optimization efforts before commercial availability. Overcoming these challenges is essential to linking technological innovation to synthesizing environmentally friendly fuels and searching other biomass wastes for 2G bioethanol to increase the biofuel industry's potential. Thus, this work is the first to discuss underutilized lignocellulosic feedstock from other agrifoods beyond sugar cane or corn, such as babassu, tobacco, cassava, orange, cotton, soybean, potatoes, and rice. Residual biomasses combined with optimized pretreatment and mixed fermentation increase hydrolysis efficiency, fermentation, and purification. Therefore, more than a product with a high added value, bioethanol synthesis from Brazilian residual biomass prevents waste production.
© 2024 The Authors. Published by American Chemical Society.