Effects of manure and nitrogen fertilization on soil microbial carbon fixation genes and associated communities in the Loess Plateau of China

Sci Total Environ. 2024 Oct 3:954:176581. doi: 10.1016/j.scitotenv.2024.176581. Online ahead of print.

Abstract

The effects of long-term fertilization on soil carbon (C) cycling have been a key focus of agricultural sustainable development research. However, the influences of different fertilization treatments on soil microbial C fixation profiles are still unclear. Metagenomics technology and multivariate analysis were employed to inquire changes in soil properties, soil microbial C fixation genes and associated bacterial communities, and the influence of dominant soil properties on C fixation genes. The contents of soil C and nitrogen fractions were signicficantly higher in manure or combined with nitrogen fertilization (NM) than other treatments. The composition of soil microbial C fixation genes and associated bacterial communities varied among different fertilization treatments. Compared with other treatments, the total abundance of microbial C fixation genes and the abundance of Proteobacteria were significantly higher in NM than in other treatments, as well as the abundances of C fixation genes involved in dicarboxylate/4-hydroxybutyrate cycle and reductive citrate cycle. Key functional genes and main bacterial communities presented in the middle of the co-occurrence network. Soil organic carbon, total nitrogen, and microbial biomass nitrogen were the dominant soil properties influencing microbial C fixation genes and associated bacterial communitis. Fertilization increased the abundance of C fixation genes by affecting the changes in bacterial communities abundance mediated by soil properties. Overall, elucidating the responses of soil microbial C fixation genes and associated communities to different fertilization will enhance our understanding of the processes of soil C fixation in farmland.

Keywords: Carbon fixation genes; Loess Plateau; Manure fertilization; Metabolic pathways; Metagenomics.