Aquaporin-1 Facilitates Macrophage M1 Polarization by Enhancing Glycolysis Through the Activation of HIF1α in Lipopolysaccharide-Induced Acute Kidney Injury

Inflammation. 2024 Oct 4. doi: 10.1007/s10753-024-02154-8. Online ahead of print.

Abstract

This study aimed to investigate how aquaporin 1 (AQP1) modulates hypoxia-inducible factor-1α (HIF1α) to promote glycolysis and drive the M1 polarization of macrophages. Within 12 h post-treatment with LPS to induce acute kidney injury in rats, a significant upregulation of AQP1 and HIF1α protein levels was noted in serum and kidney tissues. This elevation corresponded with a decrease in blood glucose concentrations and an enhancement of glycolytic activity relative to the control group. Furthermore, there was a pronounced reduction in the circulating levels of the anti-inflammatory cytokine IL-10, accompanied by an upregulation in the levels of the pro-inflammatory cytokines IL-6 and TNF-α. The administration of an HIF1α inhibitor reversed these effects, which did not affect the production of AQP1 protein. In cellular assays, AQP1 knockdown mitigated the increase in HIF1α expression induced by LPS. Furthermore, the suppression of HIF1α with PX-478 led to decreased expression levels of Hexokinase 2 (HK2) and Lactate Dehydrogenase A (LDHA), indicating that AQP1 regulates glycolysis through HIF1α. M1 polarization of macrophages was reduced by AQP1 knockdown and was further diminished by the addition of an HIF1α inhibitor. Inhibition of the glycolytic process not only weakened M1 polarization but also promoted M2 polarization, thereby reducing the release of inflammatory cytokines. These findings provide a novel perspective for developing therapeutic strategies that target AQP1 and HIF1α, potentially improving the treatment of sepsis-associated AKI.

Keywords: AKI; HIF1α; aquaporin 1; glycolysis; macrophage polarization.