The electrochemical reduction of nitrate to ammonia (NO3RR) provides a desired alternative of the traditional Haber-Bosch route for ammonia production, igniting a research boom in the development of electrocatalysts with high activity. Among them, molecular electrocatalysts hold considerable promise for the NO3RR, suppressing the competing hydrogen evolution reaction. However, the complicated synthesis procedure, usage of environmentally unfriendly organic solvents, and poor stability of Cu-based molecular electrocatalysts greatly limit their employment in NO3RR, and the development of desired Cu-based molecular catalysts remains challenging. Herein, a simple nonorganic solvent involving a one-step strategy was proposed to synthesize d-π-conjugated molecular electrocatalysts metal-amidinothiourea (M-ATU). Cu-ATU is composed of Cu coordinated with two S and two N atoms, whereas Ni-ATU is formed by Ni with four N atoms from two ATU ligands. Remarkably, Cu-ATU with a Cu-N2S2 coordination configuration exhibits superior NO3RR activity with a NH3 yield rate of 159.8 mg h-1 mgcat-1 (-1.54 V) and Faradaic efficiency of 91.7% (-1.34 V), outperforming previously reported molecular catalysts. Compared to Ni-ATU, Cu-ATU transfers more electrons to the *NO intermediate, effectively breaking the strong sp2 hybridization system and weakening the energy of N═O bonds. The increase in free energy of *NO reduced the energy barriers of the rate-determining step, facilitating the further hydrogenation process over Cu-ATU. Our work opened up a new horizon for exploring molecular electrocatalysts for nitrate activation and paved a way for the in-depth understanding of catalytic behaviors, aligning more closely with industrial demands.
Keywords: coordination regulation; electrocatalysis; ion-in-conjugation; molecular electrocatalysts; nitrate reduction reaction.