Targeting CREB-binding protein (CBP) abrogates colorectal cancer stemness through epigenetic regulation of C-MYC

Cancer Gene Ther. 2024 Nov;31(11):1734-1748. doi: 10.1038/s41417-024-00838-9. Epub 2024 Oct 2.

Abstract

Colorectal cancer (CRC) is a common cancer worldwide with an increasing annual incidence. Cancer stem cells (CSCs) play important roles in the occurrence, development, recurrence, and metastasis of CRC. The molecular mechanism regulating the development of colorectal CSCs remains unclear. The discovery of human induced pluripotent stem cells (hiPSCs) through somatic cell reprogramming has revolutionized the fields of stem cell biology and translational medicine. In the present study, we converted hiPSCs into cancer stem-like cells by culture with conditioned medium (CM) from CRC cells. These transformed cells, termed hiPSC-CSCs, displayed cancer stem-like properties, including a spheroid morphology and the expression of both pluripotency and CSC markers. HiPSC-CSCs showed tumorigenic and metastatic abilities in mouse models. The epithelial-mesenchymal transition phenotype was observed in hiPSC-CSCs, which promoted their migration and angiogenesis. Interestingly, upregulation of C-MYC was observed during the differentiation of hiPSC-CSCs. Mechanistically, CREB binding protein (CBP) bound to the C-MYC promoter, while histone deacetylase 1 and 3 (HDAC1/3) dissociated from the promoter, ultimately leading to an increase in histone acetylation and C-MYC transcriptional activation during the differentiation of hiPSC-CSCs. Pharmacological treatment with a CBP inhibitor or abrogation of CBP expression with a CRISPR/Cas9-based strategy reduced the stemness of hiPSC-CSCs. This study demonstrates for the first time that colorectal CSCs can be generated from hiPSCs. The upregulation of C-MYC via histone acetylation plays a crucial role during the conversion process. Inhibition of CBP is a potential strategy for attenuating the stemness of colorectal CSCs.

MeSH terms

  • Animals
  • CREB-Binding Protein* / genetics
  • CREB-Binding Protein* / metabolism
  • Cell Line, Tumor
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / metabolism
  • Colorectal Neoplasms* / pathology
  • Epigenesis, Genetic*
  • Epithelial-Mesenchymal Transition / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Induced Pluripotent Stem Cells / metabolism
  • Mice
  • Neoplastic Stem Cells* / metabolism
  • Neoplastic Stem Cells* / pathology
  • Proto-Oncogene Proteins c-myc* / genetics
  • Proto-Oncogene Proteins c-myc* / metabolism

Substances

  • CREB-Binding Protein
  • Proto-Oncogene Proteins c-myc
  • CREBBP protein, human
  • MYC protein, human